Volume 33

Number 12

June 8, 1994

Inorganic Chemistry

© Copyright 1994 by the American Chemical Society

Communications

A Linear Symmetric Chain with the -Cl-Zr-Cl-Zr- Unit. Crystal Structure and Convenient Syntheses of Chlorotrineopentylzirconium

Lenore K. Hoyt, Jonathan L. Pollitte, and Ziling Xue*

Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600

Received February 3, 1994

Polymeric chains with linear symmetric -X-M-X-M- (M = metals; X = halogens) repeating units are rarely seen.¹ Tl₂-Mn^{III}F₃-H₂O is reported to have a symmetric linear chain with a $-F-Mn^{III}F_4-F-Mn^{III}F_4-$ repeating unit and hydrogen bonds between the H₂O and fluorine atoms.^{1a} A two-dimensional network is observed with linear symmetric $-Cl-CdCl_4-Cl-CdCl_4-$ chains in CdCl₅(denH₃) (den = diethylenetriamine).^{1b} In our recent studies of the reaction between Np₃Zr-Cl (Np = Me₃CCH₂-) (1) and Li(THF)₃Si(SiMe₃)₃ to make an alkyl silyl complex Np₃Zr-Si(SiMe₃)₃,² we were surprised to find that Np₃-Zr-Cl (1) crystallizes in polymeric chains with a strictly linear symmetric $-Cl-ZrNp_3-Cl-ZrNp_3$ -repeating unit. To our knowledge, this is the first example of linear symmetric -X-M-X-M-chains in which M has a d⁰ configuration. We report here three convenient syntheses of Np₃Zr-Cl and its crystal structure.

Complex 1 has been synthesized through the reaction between Np₂Mg and Np₂ZrCl₂(Et₂O)₂, which was prepared *in situ* (25% yield).^{3a} We have explored some general approaches to 1. The new syntheses of 1 are summarized in eqs $1-3.^4$

$$ZrCl_4 + 3NpLi \rightarrow Np_3ZrCl + 3LiCl$$
 (1)^{4a}

$$ZrCl_4 + 3Np_4Zr \rightarrow 4Np_3ZrCl \qquad (2)^{4b}$$

$$Np_4Zr + HCl \rightarrow Np_3ZrCl + Np-H$$
 (3)^{4c}

Equations 1 and 2 are based on the metathetic reactions of $ZrCl_4$ with 3 equiv of NpLi and 3 equiv of Np₄Zr,^{3b} respectively. The reaction of Np₄Zr with 1 equiv of HCl/Et₂O solution offers another approach to 1. Complex 1 obtained by the method in eq 1 was purified by sublimation. Compound 1 from syntheses in eqs 2 and 3 was separated by crystallization or used *in situ* without further purification to make Np₃ZrSi(SiMe₃)₃.²

Figure 1 displays the geometry around two Np₃Zr-Cl units in

Figure 1. ORTEP view of two units of Np₃ZrCl (1) with thermal ellipsoids drawn at the 50% probability level. Selective bond lengths (Å) and angles (deg): Zr(1)-Cl(1) = 2.547 (1), Zr(1)-C(1) = 2.200 (4); Cl(1)-Zr-(1)-Cl(1) = 180.0, Zr(1)-Cl(1)-Zr(1) = 180.0, Cl(1)-Zr(1)-C(1) = 90.0, C(1)-Zr(1)-C(1) = 120.0, Zr(1)-C(1)-C(2) = 130.5 (2).

the solid state.⁵ The crystal packing diagrams showing the -Zr-Cl-Zr-Cl- chain structure are given in Figures 2 and 3. The chain is strictly linear and symmetric as imposed by the symmetry of a $P6_3/m$ space group (structure I). There is a 6_3 screw axis

with center of symmetry $(6_3/m)$ through each polymeric chain. Each Zr atom adopts a trigonal bipyramidal geometry as defined by the crystallographic symmetry. The angles between the neopentyl and the chloride ligands (C-Zr-Cl) are 90.0°, indicating the Zr-Cl bonds are perpendicular to the plane formed by the zirconium and three α -carbon atoms. The two adjacent Np₃Zr moieties are arranged in a staggered conformation presumably to reduce the steric strain. The bond lengths Zr(1a)-Cl(1) and Zr(1)-Cl(1) are 2.547(1) Å. In comparison, two bridging Zr-Cl lengths [2.498(2) and 2.655(2) Å] are observed in the crystal structure of ZrCl₄, which adopts a -ZrCl₂-(μ -Cl)₂-ZrCl₂-(μ -

© 1994 American Chemical Society

 ⁽a) Nuñez, P.; Tressaud, A.; Darriet, J.; Hagenmuller, P.; Hahn, G.; Frenzen, G.; Massa, W.; Babel, D.; Boireau, A.; Soubeyroux, J. L. Inorg. Chem. 1992, 31, 770.
(b) Manfredini, T.; Pellacani, G. C.; Battaglia, L. P.; Bonamartini Corradi, A.; Motori, A.; Sandrolini, F. Mater. Chem. Phys. 1988, 20, 215.

⁽²⁾ Xue, Z.; Li, L.; Hoyt, L. K.; Diminnie, J. B.; Pollitte, J. L. J. Am. Chem. Soc. 1994, 116, 2169.

 ^{(3) (}a) Wengrovius, J. H.; Schrock, R. R. J. Organomet. Chem. 1981, 205, 319.
(b) Davison, P. J.; Lappert, M. F.; Pearce, R. J. Organomet. Chem. 1973, 57, 269. Mowat, W.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 1120.

Figure 2. Projection packing diagram of the crystal down the a axis.

Figure 3. Projection packing diagram of the crystal down the c axis.

 $Cl)_{2-}$ chain structure.⁶ The Zr-Cl bond in 1 is longer than the terminal Zr-Cl bond length 2.307(2) Å in ZrCl₄.⁶ Crystal packing diagrams (Figures 2 and 3) display the arrangement of the linear symmetric chains with respect to the crystal lattices. There are four polymeric chains occupying four edges of a unit cell in a direction parallel to the *c* axis.

Bridging chloride ligands between two metal atoms normally have M-Cl-M angles around 109° such that the four electron pairs around each chlorine atom are in a tetrahedral orientation. However linear chloride-bridged compounds have been previously reported for late transition metals with d^n configurations.¹ Symmetric or nonsymmetric chains with linear dinuclear -M-M-X-M-M-X repeating units have been observed in Ru₂(O₂- CCH₃)₄Cl·2H₂O,^{7a} Ru₂(O₂CCH₂CH₃)₄Cl,^{7a} M'₄[Pt₂-(P₂O₅H₂)₄X]·*n*H₂O (M' = K, NH₄; X = Cl, Br),^{7b-e} and M₂(CH₃CS₂)₄I (M = Ni,^{7f} Pt^{7g}). Studies are underway to examine the properties of Np₃ZrCl (1) and the features of its one-dimensional chains with the linear symmetric -Zr-Cl-Zr-Cl-unit.

Acknowledgment is made to the University of Tennessee for financial support. The X-ray diffractometer was purchased with a grant from the U.S. Department of Energy (DE-FG05-87ER75378).

Supplementary Material Available: Listings of complete crystallographic data for 1 (5 pages). Ordering information is given on any gurrent masthead page.

- The solvents used here were dried by refluxing in K-benzophenone ketyl (4)and distilled before use. All operations were conducted in an atmosphere of Ar. The Schlenk flasks used in the syntheses had been flame-dried under vacuum. (a) The synthesis as shown in eq 1: NpLi (2.00 g, 25.6 mmol) dissolved at 0 °C in a mixture of 10 mL of Et2O, and 10 mL of hexanes was added in 15 min to sublimed $ZrCl_4$ (2.40 g, 10.3 mmol, 20% excess) suspended in 10 mL of stirring Et₂O at 0 °C. The mixture was warmed with stirring to 23 °C overnight. The cloudy brown solution was filtered, and volatiles were removed under vacuum. Sublimation of the brown solid at 60 °C gave 1.15 g (3.38 mmol, 40% yield based on NpLi) of yellow Np₃ZrCl (1) containing a small amount of ZrNp₄. Decomposition was observed during the sublimation. (b) The synthesis as shown in eq 2: Np₄Zr (0.500 g, 1.33 mmol) dissolved in 20 mL of Et_2O at 0 °C was added to a suspension of sublimed ZrCl₄ (0.103 g, 0.442 mmol) in 15 mL of Et₂O at 0 °C. The mixture was stirred at -2 °C for 18 h. The solvent was removed by vacuum to give a yellow solid of Np₃ZrCl (1, yield 93%) containing a small amount (6 mol %) of Np₄Zr. (c) The synthesis as shown in eq 3: Np₄Zr (0.192 g, 0.511 mmol) dissolved in 2 mL of Et₂O was cooled to -78 °C. A 5.11-mL volume of 0.10 M HCl/Et₂O (0.511 mmol) solution made from 1.0 M HCl/Et₂O (Aldrich) was added dropwise to the stirring Np₄Zr solution over 15 min. The solution was warmed to 23 °C in 5 h with stirring. Volatiles were removed by vacuum to give a yellow solid 1 (167 mg, yield 96%) with a small amount of Np4Zr. (d) Data for 1: 1H NMR (benzened₆, 250 MHz, 23 °C) δ 1.54 (CH₂), 1.09 (CMe₃);³⁸ ¹³C[¹H] NMR $(benzene-d_6, 62.9 \text{ MHz}, 23 \text{ °C}) \delta 103.5 (CH_2), 35.5 (CMe_3), 34.3 (CMe_3);$ IR (KBr pellet, 23 °C, cm⁻¹) 2950 (vs), 2858 (vs), 2802 (vs), 2704 (m), 1468 (vs), 1357 (s), 1219 (vs), 1082 (m), 928 (m), 911 (m), 740 (s), 523 (vs).
- (5) Crystal data for 1: hexagonal, $P6_3/m$ (No. 176), a = 10.125(1) Å, c = 10.189(3) Å, V = 904.5(4) Å³, Z = 2 (Np₃ZrCl formulas), $R(R_w) = 3.18\%$ (5.93%) with 364 unique reflections with F > 4.06F, GOF = 1.08, numbers of parameters refined = 32, data-to-parameter ratio = 11.4:1. The Zr atom was located by the Patterson method, and all remaining non-hydrogen atoms were located and refined anisotropically. The hydrogen atoms on the methyl groups were located from a Fourier map. The two hydrogen atoms on the CH₂ group were fixed in calculated, idealized positions [d(C-H) = 0.96 Å]. These hydrogen atoms were not refined.
- (6) Krebs, B. Z. Anorg. Allg. Chem. 1970, 378, 263.
- (7) (a) Bino, A.; Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1979, 18, 2599. (b) Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155. (c) Jin, S.; Ito, T.; Toriumi, K.; Yamashita, M. Acta Crystallogr. 1989, C45, 1415. (d) Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409. (e) Yamashita, M.; Toriumi, K. Inorg. Chim. Acta 1990, 178, 143. (f) Bellitto, C.; Dessy, G.; Fares, V. Inorg. Chem. 1985, 24, 2815. (g) O'Connor, C. J.; Romananch, R. J.; Robertson, D. M.; Eduok, E. E.; Fronczek, F. R. Inorg. Chem. 1983, 22, 449.